Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
HardwareX ; 11: e00260, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1611945

ABSTRACT

Development of emergency use ventilators has attracted significant attention and resources during the COVID-19 pandemic. To facilitate mass collaboration and accelerate progress, many groups have adopted open-source development models, inspired by the long history of open-source development in software. According to the Open-source Hardware Association (OSHWA), Open-source Hardware (OSH) is a term for tangible artifacts - machines, devices, or other physical things - whose design has been released to the public in such a way that anyone can make, modify, and use them. One major obstacle to translating the growing body of work on open-source ventilators into clinical practice is compliance with regulations and conformance with mandated technical standards for effective performance and device safety. This is exacerbated by the inherent complexity of the regulatory process, which is tailored to traditional centralized development models, as well as the rapid changes and alternative pathways that have emerged during the pandemic. As a step in addressing this challenge, this paper provides developers, evaluators, and potential users of emergency ventilators with the first iteration of a pragmatic, open-source assessment framework that incorporates existing regulatory guidelines from Australia, Canada, UK and USA. We also provide an example evaluation for one open-source emergency ventilator design. The evaluation process has been divided into three levels: 1. Adequacy of open-source project documentation; 2. Clinical performance requirements, and 3. Conformance with technical standards.

2.
PLoS One ; 16(3): e0247575, 2021.
Article in English | MEDLINE | ID: covidwho-1573727

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has led to widespread shortages of N95 respirators and other personal protective equipment (PPE). An effective, reusable, locally-manufactured respirator can mitigate this problem. We describe the development, manufacture, and preliminary testing of an open-hardware-licensed device, the "simple silicone mask" (SSM). METHODS: A multidisciplinary team developed a reusable silicone half facepiece respirator over 9 prototype iterations. The manufacturing process consisted of 3D printing and silicone casting. Prototypes were assessed for comfort and breathability. Filtration was assessed by user seal checks and quantitative fit-testing according to CSA Z94.4-18. RESULTS: The respirator originally included a cartridge for holding filter material; this was modified to connect to standard heat-moisture exchange (HME) filters (N95 or greater) after the cartridge showed poor filtration performance due to flow acceleration around the filter edges, which was exacerbated by high filter resistance. All 8 HME-based iterations provided an adequate seal by user seal checks and achieved a pass rate of 87.5% (N = 8) on quantitative testing, with all failures occurring in the first iteration. The overall median fit-factor was 1662 (100 = pass). Estimated unit cost for a production run of 1000 using distributed manufacturing techniques is CAD $15 in materials and 20 minutes of labor. CONCLUSION: Small-scale manufacturing of an effective, reusable N95 respirator during a pandemic is feasible and cost-effective. Required quantities of reusables are more predictable and less vulnerable to supply chain disruption than disposables. With further evaluation, such devices may be an alternative to disposable respirators during public health emergencies. The respirator described above is an investigational device and requires further evaluation and regulatory requirements before clinical deployment. The authors and affiliates do not endorse the use of this device at present.


Subject(s)
COVID-19/prevention & control , Equipment Design/instrumentation , Filtration/instrumentation , Pandemics/prevention & control , Personal Protective Equipment , Respiratory Protective Devices , Ventilators, Mechanical , Equipment Reuse , Face , Humans , Materials Testing/instrumentation , N95 Respirators , Occupational Exposure/prevention & control , Printing, Three-Dimensional/instrumentation , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL